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ABSTRACT 

Most of real structures exhibit nonlinear behaviour during their lifetime. Nonlinear behaviour of a 

structure can be as a result of a local effect (friction in joints, joint and link flexibility, and nonlinear 

contact) or a global nonlinearity (geometric nonlinearities, boundary conditions, and nonlinear 

material behaviours). The presence of nonlinearity in a structural system changes its dynamic 

characteristics, hence the use of linear techniques is improper and, in some cases, impossible for 

prediction of the system behaviour. In this paper, the nonlinear behaviour of steel bridges is modelled 

using the vibration measurements collected during a series of shake table testing. In this modelling 

technique, the vibration data is trained using a time series autoregressive modelling technique and a 

clustering algorithm to categorise the linear and nonlinear behaviour of steel bridge structures. The 

vibration measurements have been recorded from a six-span steel truss bridge model during shake 

table testing. The bridge model has been excited using various amplitudes of several ground motions. 

The comparison of numerical and experimental data shows that the developed modelling technique 

is able to model the nonlinear behaviour of the bridge model once it is subjected to various levels of 

excitation.  

1 INTRODUCTION 

It is crucially important to detect structural damages at an early stage before irreversible consequences. 

However, despite the extensive literature summarising damage identification techniques for Structural Health 

Monitoring (SHM) applications over the last years, there are still some needs for further development of SHM 

systems, which can provide very early identification of any alterations in a dynamic system [1]. In most of the 

proposed damage identification techniques, civil infrastructures are assessed in their linear range and linear-

based modelling method are used for dynamic analysis and condition assessment purposes. However, it should 

be mentioned that most of the real civil structures show nonlinear behaviour due to several reasons. The 

nonlinear behaviour of a structure can be as a result of a local effect, such as friction in joints, joint and link 
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flexibility, and nonlinear contact, or a global nonlinearity, such as geometric nonlinearities, boundary 

conditions, and nonlinear material behaviours. Existence of each of these nonlinearities in a system can alter 

its dynamic behaviour, thus the use of a linear-based approach is improper to model such dynamic systems 

[2]. A statistical pattern recognition paradigm is among the most effective approaches in development of SHM 

system. This paradigm consists of three main components, including data acquisition, feature extraction, and 

feature classification, which can be implemented for an automated SHM system. Several SHM feature 

extraction techniques are employed fitting linear models to measured system output before and after the 

occurrence of damage. The damage indicators are then defined using any changes in these model parameters. 

More recently, the physic-based modelling approach was expanded to time series regression modelling, 

according to which of the model parameters and residual errors are utilised as damage indicators [3,4]. In 

addition, there are several methods proposed for identifying the presence of nonlinearities of a system in the 

literature [5,6]. Some of these techniques utilised characteristics features of a nonlinear system, such as 

distortion of Frequency Response Function to detect the system nonlinearity. A few used the validity of 

principals of a linear system to identify nonlinearity in a dynamic system. However, most techniques are based 

on the comparison between the response of a linear system and an unknown system. Some of the researchers 

have suggested the use of higher order FRF’s [7], while others consider spectral analysis and different 

Autoregressive Models, such as Nonlinear Autoregressive Moving Average with eXogenous inputs 

(NARMAX) models to detect the presence of nonlinearity in a dynamic system [5].  

In this paper, a vibration-based nonlinearity identification technique is used to identify early changes in a 

dynamic system prior to any significant damages, especially after earthquakes. This technique combines 

vibration data sets with time-series autoregressive modelling to detect nonlinearity in a dynamic system. The 

technique can categorise the linear and nonlinear behaviours of a structure, when it is subjected to various 

levels of excitation source. In order to verify the performance of the method, a series of shaking table tests was 

conducted on a steel truss bridge model in the laboratory environment. 

2 METHODOLOGY 

In this part, the vibration-based nonlinearity identification technique is presented for analysing earthquake-

induced vibration data. This method is based on linear time-series modelling and testing the validity of basic 

principles of the linear models. The vibration-based nonlinearity identification technique utilises the time series 

Autoregressive Moving Average with Exogenous Inputs (ARMAX) modelling and probability theory to 

categorise the linear and nonlinear dynamic behaviours of a dynamic system. The concept of this method was 

extracted from the fact that residual error of a linear ARMAX model follows a normal distribution.  

 As mentioned, there are different types of methods to model the behaviour of linear time-invariant and 

dependent systems. Autoregressive model is a type of random process to model the time series. Autoregressive 

with eXogenous Inputs (ARX) model is one form of autoregressive models, which has been frequently used 

by many researchers. One of the disadvantages of ARX modelling to simulate dynamic behaviour of a system 

is its limitation to express the noise term due to the fact that it can represent the system disturbance as a discrete 

error. An ARMAX model is a more complete and flexible form of an ARX model that has an additional term 

as Moving Average (MA) (polynomial C(q)) to describe the disturbance dynamics of the system [8,9]. The 

following equation describes the ARMAX model: 

1 1 1

( ) ( ) ( 1) ( ) ( )
na nb nc

k k k

k k k

y t a y t k b x t nk k c e t k e t
= = =

+ − = − − + + − +    (1) 

where ak, bk and ck are the unknown coefficients of the model to be estimated and na, nb, nc and nk are the orders 

of the ARMAX model. Term e(t - k) is the white-noise disturbance value. Using the backshift operator (q), the 

above equation can be expressed as follow: 
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( ) ( ) ( ) ( ) ( ) ( )A q y t B q x t C q e t= +  (2) 

where A(q), B(q) and C(q) designate the AR, X and MA polynomials of the model in the delay operator q-1, 

which can be respectively defined by: 

1

1( ) ... na

naA q I A q A q− −= + + +
 (3) 

1

0 1( ) ... nb

nbB q B B q B q− −= + + +
 (4) 

1

1( ) ... nc

ncC q I C q C q− −= + + +
 (5) 

In this study, in order to categorise the linear and nonlinear behaviour of the system, different ARMAX models 

are constructed from various amplitudes of earthquake-induced signals. Then, the residual errors can be 

estimated by the predicted output   from ARMAX models, which is ideally a Gaussian process for a stationary 

signal [10], and the measurement output ( )y t . These residual errors (E) are presented by the following 

equations for two groups of earthquake-induced signals.  

 ( ) ( )L L LE y t y t= −  (6) 

( ) ( )un un unE y t y t= −  
(7) 

where the subscript L represents a reference status that assumes the structure behaves linearly. Also, subscript 

un shows an unknown status of the structure to be categorised using the identification process. In this study, a 

vibration data set induced using a low-amplitude earthquake excitation has been assumed to represent the linear 

model of the structure as the reference model. The behaviour of the structure under other amplitudes of 

excitation is investigated in comparison to this reference model. The predicted responses extracted from the 

reference ARMAX model and the ARMAX models represented unknown status of the structure, can be 

expressed according to Eqs. (8) and (9): 

1 1 1

( ) ( 1) ( )
na nb nc

L k L k L k

k k k

y a y t k b x t nk k c e t k
= = =

= − − + − − + + −  
 

(8) 

1 1 1

( ) ( 1) ( )
na nb nc

un k un k un k

k k k

y a y t k b x t nk k c e t k
= = =

= − − + − − + + −  
 

(9) 

Once the amplitude of excitation increases, the performance of the target structure changes from its reference 

state. Residual errors extracted from ARMAX time series models provide very significant information 

representing this change. In this study, ARMAX models are constructed using various vibration data sets and 

their residual errors are compared to their counterparts extracted from a reference ARMAX model. This 

difference will increase, as the amplitude of excitation increases, and the structure starts to behave nonlinearly 

from a specific threshold. This is because the linear time series ARMAX models are able to simulate only the 

linear models of the structure and they cannot represent the nonlinear features of the structural responses.  

In this paper, the difference between residual errors generated from the reference linear model and other 

unknown models is investigated using Empirical cumulative distribution function (ECDF) of time series 

residuals. This technique is employed in order to control the similarity between the various data sets. The 

ECDFs of residuals are respectively presented by ˆ ( )LG E  and ˆ ( )unG E  for the reference linear model and other 

unknown models and are estimated using the following equations: 

( )( )
1

1ˆ ( ) ( )
n

L L Li
i

G E I E E
n =

= 
 

(10) 

( )( )
1

1ˆ ( ) ( )
n

un un uni
i

G E I E E
n =

= 
 

(11) 
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Using the mentioned equations, the empirical cumulative distribution functions of each time series residuals 

are plotted to show the differences between residual errors of ARMAX models from the reference and 

unknown time series. In the next part, the analysis results will be presented.  

3 EXPERIMENTAL TESTS 

In this part, a series of shaking table test on a steel truss bridge model is presented to validate the accuracy of 

the proposed vibration-based nonlinearity identification technique introduced in the previous section. First, 

some descriptions are provided regarding the test instrumentation and setup. Then, the analysis results obtained 

using the nonlinearity identification algorithm are presented. 

 

(a) 
 
 

   

(b) (c) 

Figure 1: (a) The bridge model on the shaking table instrumented by wireless and wired 

accelerometers, (b) Steel ball joints, (c) roller and pinned Structural supports.  

 

3.1 Description of shaking table tests 

A six-span steel truss bridge model (as shown in Figure 1), made of MERO space frame joining system (Tube-

Node system), was used as the testbed structure for these series of shaking table tests. The structural system 

consists of tubular steel members connected together with spherical forged steel ball joints. The tubes are 

connected to ball joints by means of a cone welded to the end of the tube through which a high tensile bolt is 

screwed into the ball by means of a sleeve. Each span of the bridge structure consists of horizontal and vertical 

steel tubes with the length of 60.5 cm and diagonal steel tubes with the length of 85.5 cm. The outer diameter 

of all the steel tubes is 2.0 cm with a thickness of 0.25 cm. In total, the six-span bridge structure has 42 of the 

horizontal and vertical elements, 22 of the diagonal elements, and 24 of the ball joints.  

The bridge model was placed on two pinned supports at one end and two roller supports at another end. The 

supports were mounted on timber base plates with the thickness of 7 mm. Then, the base plates were fixed to 

the shaking table using several strong bolts. As is obvious, the bridge model was aligned in diagonal direction 

of the shake table to simulate the real behaviour of bridge structure, when subjected to earthquake excitation. 
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In addition, to provide high inertia mass for the bridge model during dynamic testing, five steel plates with 

approximate weight of 10 kg were attached to top chord of the bridge in transverse direction of the structure. 

 

 

 

 

(a) (b) 

Figure 2: (a) Rubber-based pinned support, and (b) Instrumentation setup of the support. 

 
As mentioned, the steel bridge model was supported using two roller and two pinned supports. In order to 

simulate nonlinear behaviour in the bridge structure, four rubber mounts were attached to each pinned support 

of the bridge model. The mounts, made of natural rubber, were cylindrically shaped in diameter of 30 mm and 

height of 40 mm. Due to the characteristics of rubbers in shear, they were selected as the main source of 

nonlinearity for the bridge structure. Using these elements, different levels of nonlinearity can be simulated 

using various amplitudes of excitation source. To do so, the bridge model was excited using different 

amplitudes of ground motion to control the nonlinearity degree of rubber-based supports. Figure 2(a) shows 

one of the rubber-based supports. 

                           Table 1: Characteristics of the sensors utilised throughout the dynamic tests. 

Channel Direction Location 

ACC 0 - Shake table 

ACC 1 Transverse joint 1 

ACC 2 Transverse joint 2 

ACC 3 Transverse joint 3 

ACC 4 Transverse joint 4 

ACC 5 Transverse joint 5 

ACC 6 Transverse joint 6 

ACC 7 Transverse joint 7 

ACC 8 Transverse joint 8 

ACC 9 Transverse joint 9 

ACC 10 Transverse joint 10 

ACC 11 Longitudinal joint 6 

ACC 12 Longitudinal joint 1 

ACC 13 Transverse Rubber base 

ACC 14 Longitudinal Rubber base 

LVDT 0 Transverse Rubber base 

LVDT 1 Longitudinal Rubber base 
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Figure 3: The locations of sensors on top chord of bridge (plan view). 

The bridge model was instrumented using wired accelerometer sensors and LVDTs for this series of tests in 

order to measure structural responses under different excitations. The locations and orientation of the 

accelerometer sensors are shown in Figure 3. It should be mentioned that x and y axis represent longitudinal 

and transverse direction of the bridge model. Table 1 shows characteristics of the wired accelerometers and 

LVDTs utilised for the tests. This table presents the name of channels, their measurement directions, and their 

locations on the bridge model. In total, 14 wired accelerometer sensors were attached to the steel joints to 

measure the structural responses. One wired accelerometer (ACC0) was located on the shake table to measure 

the ground motions simulated by the shake table. Ten wired accelerometers (ACC1-ACC10) were attached to 

the steel joints, joint 1 to joint 10, at top chord of the bridge to measure the structural responses in transverse 

direction. Due to the fact that the wired accelerometers can measure the structural responses in one direction 

(y direction), two more accelerometer sensors (ACC11-ACC12) were attached to joint 6 and joint 1 in 

longitudinal direction of the bridge. 

To monitor the nonlinearity degree of rubber-based supports, two accelerometer sensors (ACC13-ACC14) and 

two LVDTs (LVDT0-LVDT1) were installed on one of the supports in both transverse and longitudinal 

directions as shown in Figure 2(b). The measurements from these sensors have been used to simulate the 

acceleration-displacement relationships of the rubber-based support under various excitation sources. As 

mentioned to simulate different degrees of nonlinearity in the structure, the bridge model was subjected to 

several ground motions with various amplitudes. The characteristics of the excitation sources used during the 

dynamic tests are given in Table 2, including their name, type, and amplitude.  

Table 2: Characteristics of the excitation sources used for dynamic testing. 

Name Type Amplitude (mm) 

Test 1 Sine Sweep Excitation 0.05, 0.1, 0.3, 0.7, 1, 2 

Test 2 El Centro Earthquake 0.9, 13, 17, 35, 43, 52, 63, 70, 79, 83, 87, 98 

Test 3 Chi-Chi Earthquake 6.5, 13, 26, 54, 100, 130, 190, 210 

Test 4 Tabas Earthquake 4, 8, 16, 32, 64, 80, 120, 145, 160, 18, 190 

3.2 Data analysis and results 

In this part, the analysis results obtained using the vibration-based nonlinearity identification technique are 

presented using the vibration data measured from the bridge model. First, in order to show the nonlinear 

behaviour of the rubber-based supports during high amplitude of excitation, the acceleration-displacement 
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graphs obtained from the instrumented rubber-based support are presented. To do so, the bridge model was 

excited using different amplitudes of sine sweep signal and El Centro earthquake.  

 

 

Figure 4: Acceleration-displacement graphs obtained from rubber-based support during Test 1. 

  

Figure 5: Backbone curves obtained from rubber-based support during Test 1. 

Figure 4 shows the force-displacement graphs obtained from the rubber-based support during the sine sweep 

excitation in transverse direction of the bridge structure. The sine sweep excitation was applied to the structure 

with different amplitudes started from a minimum of 0.05 mm to a maximum of 2.0 mm and frequency range 

of 6-6.4 Hz. Figure 5 also presents the corresponding backbone curves of the force-displacement hysteresis 

loops shown in Figure 4. As presented in these figures, the structure started to behave nonlinearly with the 

increase in excitation amplitude, as the slope of acceleration-displacement graphs starts to reduce gradually. It 

can be concluded from the results that the stiffness of the system starts to decrease after an amplitude of 0.1 

mm.  

 

 

(a) Transverse direction (b) Longitudinal direction 

Figure 6:  Acceleration-displacement graphs obtained from rubber-based support during Test 2.  

Figure 6 also presents the acceleration-displacement graphs obtained from the rubber-based support during 

three different amplitudes of El Centro earthquake in both transverse and longitudinal directions. These results 

were extracted by considering just a few samples of data with maximum amplitudes. Similar to the sine sweep 
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excitation, the bridge model showed nonlinear behaviour (reduction in stiffness) with the increase in excitation 

amplitudes. The reduction in slope of acceleration-displacement graphs is more obvious in longitudinal 

direction of the bridge model. It can be concluded that the rubber-based supports of the bridge model can 

represent the material nonlinearity type in the structural system. It should be mentioned that this category of 

nonlinearity is one of the most common nonlinearity types in real-world civil infrastructures, such as bridges. 

After confirming the presence of the nonlinearity in the structural system using the rubber-based supports, the 

analysis results obtained using the nonlinearity identification algorithm are presented.  

During the dynamic testing, the bridge model was subjected to three well-known ground motions; 1940 El 

Centro earthquake, 1999 Chi-Chi earthquake, and 1978 Tabas earthquake. A low amplitude of each 

earthquakes was applied to the bridge structure and assumed to represent its reference linear model. For 

example, it was assumed that the bridge model has a linear dynamic behaviour under the El Centro earthquake 

once an amplitude of 0.9 mm was applied to the model. So, this model was considered as a reference linear 

model to investigate the behaviour of the structure under this ground motion. Different ARMAX models were 

constructed using the structural responses for different amplitudes. The ARMAX model constructed using the 

reference linear model was considered Linear model and the other ARMAX models from higher amplitudes 

of excitation were considered as Unknown models. It should be mentioned that the excitation input recorded 

using ACC0 located on the shake table was used as the input of time series models. 

  

ACC1 - 13 mm ACC8 - 13 mm 

 
 

ACC1 - 98 mm ACC8 - 98 mm 

Figure 7: Measured and predicted responses recorded during Test 2 in transverse direction. 

Figure 7 presents the structural responses measured from the bridge model using ACC1 and ACC8 during the 

amplitudes of 13 mm and 98 mm of El Centro earthquake. These figures also show the structural responses 

predicted from the corresponding ARMAX models. A fit ratio of 88.3% and 89.7% was obtained for channels 

1 and 8 during the low amplitude of excitation (13 mm). Also, a fit ratio of 78.7% and 82.6% was obtained for 

channels 1 and 8 during the high amplitude of excitation (98 mm). It can be observed that the ARMAX 

modelling was able to predict the structural responses with satisfactory prediction and the numerical models 
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are reliable to be used for nonlinearity identification process. The orders of polynomials na, nb, nc, and nk for 

the vibration data sets were set to 4, 4, 1 and 1, respectively. 

  

ACC1 - 98 mm ACC8 - 98 mm 

Figure 8: ECDFs due to various levels of El Centro Earthquake in transverse direction. 

In the next step, the residual errors were calculated for the reference model and the unknown models. The 

ECDFs of residual errors obtained from different amplitudes of El Centro earthquake using ACC1 and ACC8 

are illustrated in Figure 8. The empirical cumulative distribution function of each time series residuals 

graphically showed that the deviation of residual errors from the reference line increases as the amplitude of 

excitation increases. This shows the fact that the at higher levels of excitation, the residual errors extracted 

from linear ARMAX models do not follow a normal distribution. 

For Chi-Chi earthquake and Tabas earthquake, it was considered that the bridge model has a linear behaviour 

under an amplitude of 6.5 mm and 0.4 mm, respectively. Therefore, these models were utilised as the reference 

linear models to analyse the behaviour of the bridge model under the earthquakes. The structural model was 

then excited by various amplitudes of these ground motions from a minimum of 13 mm to a maximum of 210 

mm for Chi-Chi earthquake and from a minimum of 4 mm to a maximum of 190 mm for Tabas earthquake.  

  

(a) ACC4 (b) ACC6 

Figure 9: ECDFs due to various levels of Chi-Chi Earthquake in transverse direction. 

  

(a) ACC2 (b) ACC7 
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Figure 10: ECDFs due to various levels of Tabas Earthquake in transverse direction. 

Various ARMAX models were constructed for different amplitude cases. A fit ratio of 95.3% and 96.4% was 

obtained for channels 4 and 6 during the low amplitude of Chi-Chi earthquake (13 mm). Also, a fit ratio of 

86.2% and 88.9% was obtained for channels 4 and 5 during the high amplitude of excitation (210 mm). In 

addition, during the TABAS earthquake, a fit ratio of 98.8% and 98.9% was obtained for the amplitude of 4 

mm and a fit ratio of 81.6% and 82.1% was estimated for the amplitude of 190 mm for channels 2 and 7, 

respectively. Therefore, considering the good fit ratios obtained for low and high amplitudes of earthquakes, 

the ARMAX models constructed from the measured vibration data sets can be reliably utilised for nonlinearity 

identification. After calculating the residual errors, the ECDF values of residuals obtained from different 

amplitudes of Chi-Chi earthquake using ACC4 and ACC6 are shown in Figure 9(a) and (b), respectively. In 

addition, Figure 10(a) and (b) presents the ECDFs of residuals obtained from various amplitudes of Tabas 

earthquake using ACC2 and ACC7, respectively. As obvious, the ECDF plots corresponding to higher 

amplitudes of both ground motions showed more deviation from the reference line. This confirms the fact that 

the linear ARMAX model residuals do not follow a linear normal distribution as the amplitudes of excitation 

exceed from a specific range. This range varies for different ground motions with various frequency content. 

In future study, a new technique based on the results of this paper will be proposed to specify a unique threshold 

for each subjected earthquake. 

4 CONCLUSION 

In this study, a vibration-based nonlinearity identification technique is presented to identify the early changes 

in a dynamic system prior to any significant structural damages. This technique combines vibration data sets 

with Autoregressive Moving Average with Exogenous Inputs (ARMAX) modelling and probability theory to 

recognise nonlinearity in a dynamic system. The concept of this method was extracted from the fact that 

residual error of a linear ARMAX model follows a normal distribution. The technique can categorise the linear 

and nonlinear behaviours of a structure, when it is subjected to various levels of excitation source. In order to 

verify the performance of the method, a series of shaking table tests was conducted on a steel truss bridge 

model in the laboratory environment. Rubber mounts were attached to the bridge supports to simulate material-

type nonlinearity in the bridge model. The bridge model was excited using different amplitudes of ground 

motions to control the nonlinearity degree of rubber-based supports. The vibration data recorded using high-

performance accelerometers from the bridge model under different ground motions was used for data analysis. 

The results of shake table tests obtained using the vibration-based nonlinearity identification technique proved 

the validity of the method to analyse the earthquake-induced vibration data. The results showed that the 

vibration-based nonlinearity identification technique is able to identify nonlinear behaviour of the bridge once 

it was subjected to different levels of earthquake excitations. This algorithm can be very helpful to assess the 

structural performance at early stage of damage occurrence after sudden events. 
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